### PROSORP®





#### The INTENSIV-FILTER PROSORP®-Process

Distinguishes itself through a highefficiency adsorptive dry or semidry harmful-gas treatment.

PROSORP® consists of three process stages:

1. the off-gas conditioning,

 $\omega$ 

0

- 2. the sorption stage, with/without recirculation of the used additives, as well as
- 3. the gas and solids separation.

These process stages are complemented by an optimised silo and dosing technology for the sorbents.



components according to regulation 17 BimSchV



Sorption installation after a non-ferrous metal melting furnace for separation of polychlorinated hydrocarbons

#### The challenge

The legislator prescribes emission limit values for all industrial sectors which is continuously adapted to technical standards. Regulatory bodies such as the Technical Air-Directive (TA-Luft) technical air instructions, large and small-scale incineration-plant regulations, such as decrees for the Federal Air Pollution Laws

(BimSchV) Federal Emissions Protection Legislation, demand the installation of effective of- off-gas cleaning measures.

Apart from newly-erected plants, increasingly existing plants also have to be retrofitted with modern off-gas cleaning technology. Owing to the multitude of simultaneously occurring harmful gases in the off-gas, a simultaneous process such as PROSORP® is ideally suited to numerous processes.



Sewage incineration.

Dry sorption installation after a special-waste incinerator rotary kiln.



Mighty solutions for tiny particles.

#### Off-gas conditioning

Depending on the task, the off-gas is firstly cooled and conditioned in the INTENSIV-FILTER-Tube-cooler or with a vapour-cooler by means of water-injection.



#### The Experience

INTENSIV-FILTER has constructed plants of various dimensions and capacities for the following applications:

- Firing installations for solid and liquid fuels
   Plants for thermal treatment of waste and special waste
- Sewage incineration plants
   Soil rehabilitation plants
- Smelting ovens for aluminium, lead, copper and zinc
- Metal-refining plants
   Chemical industry plants

Among others, these materials were separated:
- Dust
- Sulphur dioxide, hydrogen chloride, hydrogen fluoride
- Heavy metals such as mercury, lead and arsenic
- Dioxins and furanes

#### The Solution

The **PROSORP**<sup>®</sup> process from INTENSIV-FILTER is a dry or semi-dry functioning simultaneous process for separation of numerous industrially created gaseous and solid harmful substances.

**PROSORP**® offers a strong-performing and cost-saving solution to harmful-substance production for new plants as well as for retrofitting existing plants.

Suitable solid additives filter harmful substances from offgases via adsorption and/or chemisorption. In this process the filter-medium holds the additives back with the solid harmful-substance and then channels them out again from the filter.

Proven INTENSIV-FILTER-Technology is utilised in the **PROSORP**<sup>®</sup> process as a highly-efficient sorption reactor.





#### 1. Sorption stage

The mechanically or pneumatically-operating, homogeneous fine-dispersive spreading of the additive guarantees optimal contact between the harmful gas and the sorbent in the flow reactor.

#### Recirculation

A partial recirculation of the additive occurring in the filter ensures the most effective use of the sorbents through reintroduction into the off-gas stream in front of the bag-filter plant. Dosing and circulation volume of the sorbents are variable in order to encounter flexibly the varying off-gas volumes and harmful-substance concentrations with minimum sorbent usage.

## 2. First sorption stage and gas and solids separation

Main components of the PROSORP® process from INTENSIV-FILTER for simultaneous separation of dust and gaseous harmful emissions is the INTENSIV-JET-Bag-Filter, which for decades has been successfully installed worldwide.



#### 2. Second sorption stage

The active sorbents form an absorption zone on the filterbag surface of the downstream INTENSIV-JET-Bag-filter plant, which is comparable to the pouring of a solid bed adsorber.

Through a cleaning action of the filter bags adapted to the **PROSORP**<sup>®</sup> process, the coating of the filter-bag surface is constantly renewed and kept at a high level.

The harmful substance which is bound to the solids is channelled out with the used adsorbent and the process dust



The PROSORP®-process

# .with Intensiv-Filter technology.

#### The advantages of the PROSORP®-process - High flexibility with regards to volume and composition of the harmful substances. - Minimal operating costs and small volume of solids through optimal application of the sorbents utilised. - No waste water. - High availability and low maintenance requirement through proven and robust Hydrogen fluoride INTENSIV-FILTER-plant technology. - Modest space requirements. PROSORP® plants from INTENSIV-FILTER function problem-free with various additives. - Hydrated lime (Calcium hydroxide). - Activated carbon / Activated coke. - Sodium bicarbonate (Neutrec-Process) - Aluminium oxide. - Zeolite. Mixture of various additives. The emissions limit values of the 17th. BimSchhV (incineration plant regulations for waste and similar combustible materials) for Dust (total)\* 10 mg/m3 i.N. Organic substances (total carbon )\* 10 mg/m3 i.N. TOC 50 mg/m³ i.N. Sulphur oxide (as SO2)\* SO2 Hydrogen chloride HCI\* HCL 10 mg/m3 i.N. Hydrogen fluoride HF\* HE mg/m³ i.N. Mercury HG\*\* HG 0,05 mg/m3 i.N. 2,3,7,8-Tetrachloridedibenzodioxine Cd, TI\*\* (in total) Cd.TI 0.05 mg/m3 i.N. 0,5 mg/m3 i.N. Sb,As,Pb,Cr,Co,Cu,Mn,Ni,V,Sn,\*\*(in total) Dioxins und furanes (PCDD/F)\*\* PCDD/PCDF 0,1 ng/m3 i.N. \*Daily mean value \*\*Mean value over the sampling period; Sample size 11 % O2 Hg The composition of the additive mixtures is adpated to the individual application to avoid danger of explosion or fire. Mercury Sulphur dioxide Hydrogen chloride



2,3,7,8-Tetrachloridedibenzofurane