Intensiv-Filter GmbH & Co. KG

Optimized Cleaning Systems for Industrial Baghouse Filters

FILTECH 2011, Wiesbaden

March 24th 2011

P. Bai, T. Neuhaus, T. Schrooten, G.- M. Klein Intensiv-Filter GmbH & Co. KG, Velbert-Langenberg, Germany

ШIЛД Ф

- 1. Introduction
- 2. Test conditions
- 3. Analysis of pressure progression inside filter bag
- 4. Test results
- 5. Conclusion
- 6. ProExpertise

Optimized Cleaning Systems for Industrial Bag Filters Introduction

Leadership in industrial dedusting technology for more than 85 years

Optimized Cleaning Systems for Industrial Bag Filters Introduction

More than 50,000 references all over the world

Process filter, kiln and rawmeal mill dedusting - France

Introduction

ProJet mega® PJM 136/36-8000-D

Heidelberg Cement, Cementa Slite, Gotland Sweden

Cement kiln and rawmeal mill dedusting

Turnkey project, 1,225,000 m³/h a.c., $c_{RG} = 300 \dots 900 \text{ g/m}^3$

During erection (July 2009)

After hot commissioning (Nov. 2009)

INTENSIV I FILTER

Introduction

A special pressure measurement system was used to determine the efficiency of the cleaning systems for bags up to 12m length.

Introduction

Comparison of different injector systems

a) Hole type nozzle with inlet nozzle b) Ideal nozzle with inlet nozzle

c) Coanda Injector with inlet nozzle

Optimized Cleaning Systems for Industrial Bag Filters Test conditions

• Test with dust complicates the measurements and compromises the measuring technique

- Tests were performed with a special filter medium and without dust.
- Several bags from practice analyzed and the air permeability (DIN EN ISO 9237) measured

Air permeability [I/(dm ² ·min)] @ 200 Pa according to DIN EN ISO 9237					
Dust loaded bags before cleaning	Bags after the jet-pulse cleaning				
4 - 6	10 - 50				

A special filter medium with 5 l/(dm²·min) was selected .

For validating the test, a filter medium with 30 $I/(dm^2 \cdot min)$ and a steel pipe with 0 $I/(dm^2 \cdot min)$ were added to the tests.

Optimized Cleaning Systems for Industrial Bag Filters Test conditions

Test bench

Positioning of transmitter inside bag

Quick response pressure transmitters

Evaluation unit

Software

Analysis of pressure progression inside filter bag

Analysis of pressure progression inside filter bag

Analysis of the impulse measurement

(Surface integral below the positive part of the bag pressure curve)

$$p_D = \int_{t_1}^{t_2} p(t) \cdot dt$$

MENS

Test results

INTENSIV Imp Filter

Test results

Minimum: about 300-400 Pa for limestone (Sievert)

Test results

Test results

Minimum: about 900 - 1000 Pa for limestone (inclusive under pressure of 600 Pa)

- The minimum required tank pressure for an effective dust cake release.
- Bags up to 12 m can be regenerated with the optimized Intensiv-Filter cleaning system for online and offline operation.
- The optimal cleaning pressure must be adapted individually for each application to achieve minimum energy consumption.

Because of several parameters influencing the optimal operating point of a baghouse filter and the cleaning system respectively, a new calculation tool has been developed and introduced onto the market.

ProExpertise

Optimized Cleaning Systems for Industrial Bag Filters ProExpertise

ProExpertise						
Sprache/Language	English	Deutsch/ English				
Default Values		_				
Type of dust		Raw meal/kiln dust				
Dust concentration [g/m ³]		535	ļ			
Operating temperature [°C]		125	+_		Input	
volume flow [m*n] a.c.		830.557	Gross		Calculated	
Air-to-cloth ratio [m³(m4-min)]	accord air	0,7	rvet			
Energy demand for 1 M ³ (n.c.) compr fkWb/m31	essed all'	0,1				
Fan officiency		0.8	+			
Annual operating hours [h/a]		8000	-			
Floctricity rate [£/kWh]		0.05	Input-IC JN or PIM			
Filtor type		0,05 D.IM				
Number of bags per chamber		136	mput. 00, on or	r ont		
Number of chambere		130	+			
Number of chambers during cleaning	Imper of chambers		Input: 0 for Only	1		
Injector type	(onnie)	N	Input: C or N - /	~ C = Coanda and N	I – Nozzla	
Filter medium		Mombran	Input: Mombre	ProTox m Ac 7	ProTox DI	
Operating mode		Offline	Input: Offline or	Online	IVION F1	
Bag diameter [m]		0 165	input. Online or	Online		
Dag longth [m]		0,105	ł			
Tomporature of compressed air [90]		20	ł			
Safety factor (loaks and losses)		20	ł			
Air tank volume [1]		10%	-			
Filter area [m ²] (gross)		40	-			
Filter area [m ²] (gross)		10175.2	-			
Filler area (ill-) (iller)		19175,5	-			
Number of bags in total		4050	+			
Number of injection tubes per chamb	er	9	-			
Calculation Doculte		0				
		Cleaning n		1		
Cycle time [s]	0.6	0.5		03	0.2	
offic time [3]	0,0	verare pressure drop	(filter bart + f	ilter cake [Da]	0,2	
104	763	769	774	780	809	
194	105	Pressure drop (m	iscellaneous	**) [Da]	003	
104	320	320	320	320	320	
194	320	Total average r	ressure dror	[Pa]	320	
104	1193	1120	1104	1200	1220	
194	1105	Compressed air on	nsumption fr	m ³ /h n c l	1229	
104	1000	968	706	596	377	
194	1000	nual energy demand (e	ompreseda	ir + fan) [kWb	(a]	
104	3 530 525	3 436 013	3 318 0F2	3 237 414	3 138 321	
194	0.000.020 A	nnual operating costs	compressed	air + fan) [6/2	1	
	470 500	171.946	165 049	161 071	450.040	
10/1						

- Input of design and operating parameters, e.g. gas volume, raw gas concentration, temperature, cycle time, filter medium, bag length...
- Calculation of pressure drop and the energy demand in € of the filter plant.
- ProExpertise validated by several filter plants in practice.

Optimized Cleaning Systems for Industrial Bag Filters ProExpertise

Operating costs of a filter plant (without filter bag costs):

www.intensiv-filter.com

Thank you for your attention.